
X

A
D

-A
1

7
8
 9

75

_ ___.._ ■ - ' ' ':

Software Engi neering Institute uiiU rlLt vU

Technical Report

ESD-TR-86-207
CMU/SEI 86-TR-3

Durra:
A Task-Level
Description Language

Preliminary Reference Manual

1
M. R. Barbacci
J. M. Wing

♦ *

December 1986
Version 0.1

♦ ♦
♦ ♦

»

I I

♦

x

♦
lä»"""*

ELECTE
APR 0 81987

%

*

♦

8 i

ipm

Best
Available

Copy

Software Engineering Institute
Technical Report

ESD'TR'86-207

CMU SEI-86-TR-3
Decembcr 1986 Version 0.1

Durra: ATask-Leve! Description Language
Preliminary Reference Manual

M.R. Barbacci
J.M Wing

Approved lor public release. Distribution unlimited.

Carnegie Mellon University Pittsburgh, Pennsylvania 15213

This research \s carried out jointly by the Software Engineering Institute, a Fedoraliy Funded Research and Development
Center, sponsored by the Department of Defense, and by the Department of Computer Science, sponsored by the
Defense Advanced Research Projects Agency (DOD), ARPA Order No 4976, monitored by the Air Force Avionics
Laboratory Under Contract F33615-84-K-1520- Additional support for J.M Wing was provided in part by the National
Science Foundation under grant DMC-8519254

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
HanscomAFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position.

It is published in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication,

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

A c c e s r? 1.1

MTTFi

for

:A*I
DTI(3 TAR
Unannounced □
Ju s 1 i f i ca 11 OCL___^™._

Distribution/

Availability Codea

jAvÄil and/or
Mst Special

/H
-iaMM—

Table of Contents
1. Introduction 1

1.1. Scenario i
1.2. Terminology 2
1.3. Notes on Syntax 5
1.4. Keywords and Predefined Identifiers 5
1.5. Literal Values 7
1.6. How To Read This Manual 7

2. Compilation Units 8
3. Type Declarations 9
4. Task Descriptions 10
5. Task Selections 11
6. Interface Information 12

6.1. Port Declarations 12
6.2. Signal Declarations 12
6.3. Rules for Matching Selections with Descriptions 13

7. Behavioral Information 14
7.1. Function Part 14

7.1.1. Larch Traits and Specifications 15
7.1.2. Functional Specification of a Task 16

7.2. Timing Part 16
7.2.1. Time Literals 16
7.2.2. Event Expressions and Time Windows 18
7.2.3. Timing Expressions 19
7.2.4. Restrictions on Time Values and Time Windows 20

7.3. Rules for Matching Selections with Descriptions 20
8. Attributes 21

8.1. Rules for Matching Selections with Descriptions 22
9. Structural Information 23

9.1. Process Declarations 23
9.2. Queue Declarations 23
9.3. Data Transformations 24

9.3.1. Off-Line Data Transformations 24
9.3.2. In-Line Data Transformations 25

9.4. Binding Port Names 27
9.5. Process-Queue Graph Reconfiguration 27

10. Predefined Language Facilities 29
10.1. Functions 29
10.2. Attributes 30

10.2.1. Mode Attribute 30
10.2.2. Implementation Attribute 30
10.2.3. Processor Attribute ?0

10.3. Tasks 31
10.3.1. Broadcast 31
10.3.2. Merge 31
10.3.3. Deal 31
10.3.4. Illustrative Task Descriptions 32

10.4. Configuration File 33
11. Appendix -- An Extended Example 34

11.1. Data Transformation Tasks 34
11.2. Type Declarations 34
11.3. Task Descriptions 34
11.4. Application Description 37

Durra: A Task-level Description Language
Preliminary Reference Manual

Abstract

Durra is a language designed to support the development of large-grained parallel
programming applications. This document is a preliminary reference manual for the
syntax and semantics of the language. Comments, suggestions, criticisms, etc., are
appreciated.

Dr. Mario R. Barbacci
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
(412)268-7704
Barbacci@sei.cmu.edu.arpa

Professor Jeannene M. Wing
Dept. of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
(412)268-3068
Wing(a)c.cs.cmu.edu.arpa

SEI-86-TR-3

COMMENT -- Durra, also called "Indian millet" and "Guinea com,'' is a type of gram sorghum
wtth slender stalks, widely grown in warm dry regions. Durra sounds like "durable" which
isn't a bad connotation. Carnegie Institute personnel indicated that com is by far the
largest in size of all grains. We respectfully declined their suggestion for a name denoting
"largest grain."

1. Introduction
Many computation-intensive, real-time applications require efficient concurrent execution of multiple tasks
devoted to specific pieces of the application. Typical tasks include sensor data collection, obstacle
recognition, and global path planning in robotics and vehicular control applications. Since the speed and
throughput required of each task may vary, these applications can best exploit a computing environment

consisting of multiple special and general purpose processors that are logically, though not necessarily
physically, loosely connected. We call this environment a heterogeneous machine.

During execution time, processes, which are instances of tasks, run on possib.j separate processors, and

communicate with each other by sending messages of different types. Since the patterns of
communication can vary over time, and the speed of the individual processors can vary over a wide

range, additional hardware resources, in the form of switching networks and data buffers are required in
the heterogeneous machine.

The application developer is responsible for prescribing a way to manage all of these resources We call
this prescription a task-level application description. It describes the tasks to be executed, the possible

assignments of processes to processors, the data paths between the processors, and the intermediate
queues required to store the data as they move from source to destination processes. A task-level
description language is a notation in which to write these application descriptions. The problem we are
addressing is the design of a task-level description language.

We are using the term description language rather than programming language to emphasize that a
task-level application description is not translated into object code of some kind of executable "machine

language." Rather, it is to be understood as a description of the structure and behavior of a logical
machine, that will be synthesized into resource allocation and scheduling directives. These directives are
to be interpreted by a combination of software, firmware, and hardware in a heterogeneous machine.

Although our ultimate goal is to design and implement a task-level description language that can be used
for different machines and for varying applications, our first pass is influenced by both a specific
architecture, HETO [4], and by a specific application, the Autonomous Land Vehicle (ALV), and more

specifically, the perception components of the ALV^fSJ* We assume there is a cross-bar switch, intelligent
buffers on the switch sockets, and a scheduler that can communicate with all processors, buffers, and I/O
devices.

1.1. Scenario
Here is a scenario from the user's viewpoint of how the task-level language is used to help develop an
application to run on some target, heterogeneous machine. We see three distinct phases in the process;

1. the creation of a library of tasks,

2. the creation of an application description, and

3. the execution of the application.

Library creation activities
These happen early in the life of an application, when the primitive tasks are defined.

1. The developer breaks the application into specific tasks. Typical tasks are sensor
processing, feature recognition, map database management, and route planning. Other
tasks might be of a more general nature, such as sorting, array operations, etc.

2. The developer writes code implementing the tasks. For a given task, there may be possibly
many implementations, differing in programming language (e.g., one written in C or one
written in W2), processor type (e.g., Motorola 68020 or IBM 1401), performance
characteristics, or other attributes. The writing of a task implementation is more or less
independent of Durra and involves the coding, debugging, and testing of programs in
various languages executing on various machines.

3. The developer writes task descriptions and enters them into the library. This is where Durra
first enters the picture. Durra is used to write specifications of eacn task's performance and
functionality, the types of data it produces or consumes, and the ports It uses to
communicate with other tasks.

Description creation activities
These happen when the user decides to put together an application (say, autonomous land vehicle) using
as building blocks tasks in the library.

1. The user writes a task-level application description. Syntactically, a task-level application
description is a single task description and could be stored in the library as a new task. This
allows writing hierarchical task-level application descriptions.

2. The user compiles the description. During compilation, the compiler retrieves task
descriptions matching the task selections specified by the user from the library and
generates a set of resource allocation and scheduling commands to be interpreted by the
scheduler.

3. The user links the output of the compiler with run-time support facilities, obtaining a
scheduler program.

Application execution activities
I.The scheduler downloads the task implementations, i.e., code, to the processors and

interprets the scheduling commands and initialization code for the machine.

2. The heterogeneous machine runs the processes on processors as dictated by the
scheduler program.

1.2. Terminology
Durra is used for describing process interaction at a logical, not physical, level, and thus it can be used
independently of any physical configuration of an actual heterogeneous machine. We will use different

terms to distinguish between the physical network (P) of processors, memories, and switches
implementing the heterogeneous machine, and the logical network (L) of processes and data queues
implementing the application (A). Figures 1 and 2, respectively, illustrate the physical and logical
components of the system.

buffers (P) computers acting as input or output devices, interfacing processors with the switch.
As an optimization, buffers execute predefined tasks such as merge, deal, broadcast,
and data transformations.

implementation (A) code written in some programming language for a specific processor, and satisfying
the performance, functional, and other requirements specified in a task description.

ports (L) processes' logical input or output devices. Input ports remove data from queues;

Scheduler

Processors

Buffers
(prccessor+
memory)

Switch

Buffers
(processor-i-
memory)

Data Paths

Switched

""—"■" Permanent

Control Paths

Figure 1 -- Physical Components

Input Ports

Output Ports

PROCESS.PORT

Queue

NJ/
PROCESS.PORT

'igure 2 --- Logical Components

output ports deposit data in queues.

process (L) a uniquely identifiable instance of a task, running on a processo of the heterogeneous
system. The same task may be instantiated any number of times to obtain multiple
processes executing the same code.

processor (P) a computer in the heterogeneous system, not to be confused with the scheduler
processor or the buffers. Each processor in the heterogeneous system has one or
two buffers that act as interfaces between the processor and the switch. Processors
send data to and receive data from buffers as their means of communication with
other processors.

queue (L) a uniquely identifiable logical link between two processes, following a FIFO discipline.
Queues serve as intermediaries between input and output ports.

scheduler (P, L) a computer serving as resource allocator and dispatcher in the heterogeneous
system. It controls the switch, all processors, and all buffers.

switch (P) an interconnection network used to tie together all processors in the heterogeneous
system. The switch routes data between the buffers attached to the processors.

task (L, A) an abstraction of a set of implementations, each written for a class of processors,
implementing part of an application. Tasks are stored in libraries.

The processes of tli3 system are impiementPd by downloading and executing task implementations, i.e.,
programs, onto processors f the right kind. The queues of the system are implemented by allocating
space in the corresponding 'uffers' memories. This is illustrated in Figure 3.

1.3. Notes on Syntax
To describe the syntax of the iV^.k-;.evel Description Language, we use the standard Backus-Naur-Form
(BNF), with the following convention:;.

1. Commas separate alternatives, Brpses ("{" and "}") indicate optionality.

2. Terminal symbols are enclosed in quotes (" and "), but the quotes do not belong to the
terminal.

3. No distinction is made between upper and lo.ver case letters in terminals and non-terminals.

4. A non-terminal of the form xyz_Listcomma stands for a list of one or more xyz's separated by
commas, i.e., the character",", not the string "comma."

5. Comments start with the characters ' -". Any characters between "-" and the end of the
line are ignored.

6. Identifiers are, in the usual fashion, sequences of letters, digits, and "__" (underscore),
beginning with a letter.

7. Strings are arbitrary sequences of Ascii printable characters, enclosed in double quotes (").
A double quote inside a string must be written as two consecutive double quotes:

"A string with a double quote,"", Inside"

8. Integer and real numbers are always decimal, i.e., base 10. A real number can terminate
with a period "." without a fractional part.

1.4. Keywords and Predefined Identifiers
Keywords and predefined identifiers are highlighted in normal text by writing them in \>old face, or in
"quotes'. respectively. The following words are keywords In the language: after, and, array, ast,
attributes, before, behavior, bind, cst, date, days, during, end, ensures, est, gmt, hours, identity, If,

Processors

Buffers

Switch

Figure 3 — Mapping of Logical and Physical Components

AM

index, in, is, local, loop, minutes, months, mst, not, of, or, out, ports, process, pst, queue,
reconfiguration, remove, repeat, requires, reshape, reverse, rotate, seconds, select, signals, size,

structure, task, then, timing, to, transpose, type, union, when, years

Ttv following words are predefined identifiers in the language: "broadcast", "current_size",

"currentjime", "deal", "delay", "get", "implementation", "merge", "minusjime", "mode", "plusjime".

"processor", "put",

1.5. Literal Values
Each of the non-terminals Integerv'alue. RealValue, StringValue, and TimeValue stands for (a) literals
(constants) of the appropriate kind, or (b) names of attributes (Section 8) whose values are literals of the

appropriate kind, or (c) calls to one of the predefined functions in the language (Section 10.1) returning

values of the appropriate kind;

IntegerValue ::= IntegerLiteral ,
GlobalAttrName ,
FunctionCall

RealValue ::= RealLiteral ,
GlobalAttrName ,
FunctionCall

StringValue ::= StringLiteral ,
GlobalAttrName ,
FunctionCall

TimeValue ::= TimeLiteral ,
GlobalAttrName ,
FunctionCall

1.6. How To Read This Manual
This manual is written top-down, so the reader should be aware that there are many forward references.
One can read this manual from beginning to end to get an overview of the language, and then read

individual sections to understand the details of each language feature.

2. Compilation Units
Syntax:
Compilation
CompilationUnit

: := CompilationUnit^ist,,^^,,^^
::= TypeDeclaration ,

TaslcDescription

Meaning:
There are two kinds of compilation units (i.e., separately compilable structures): type declarations and

task descriptions.

Any number of compilation units can be submitted to the compiler as a group, in a single text file. Each
unit is compiled in order, and i(no errors are detected, the unit is entered into the library. It can then be

used by units compiled later, including units submitted later in the same compilation.

3. Type Declarations
Syntax:
TypeDe'-larat ion :: = ,^TYPE'' TypeName V,IS'' TypeStructure ,

''TYPE'' TypeName ''IS'' UnionStructure

:= Identifier

:= ''SIZE'' ElementSize ,
■ 'AKRAY'' ArrayDimension ''OF' ' TypeName

M' IntegerValue_Listflpaca ')' -•- Positive integer

IntegerValue , -- Positive number of bits
IntegerValue ''TO'' IntegerValue

-- Non-negative size range

:= ''UNION'' '(' TypeName_Listc ')'

TypeName

TypeStructure

ArrayDimension

ElementSize

UnionStructure

Examples:
•ype packet IS size 12B to 1024;
type tails 's array (5 10) of packet;
type mix is union (heads, tails) ;

Meaning:
Type declarations are compilation units that define the structure of the data produced or consumed by the

tasks. A type declaration introduces a global name for a data type, or a set of previously declared types,
which caii then be used in port declarations.

There are two kinds of type declara^ons. First, a type declaration can specify the structure of the data

moving through a process port. The basic data type is a sequence of bits of fixed or variable (but bound)
i ncjih. Mere complex types are declared as multi-dimensional arrays of simpler types. Second, a type

can specify the union of a number of previously declared, i.e., named, types where data items moving
through a piocess port could be one of any of the member types.

-- Packets are of variable length
— Tails are 5 by 10 arrays of packets

-- Mix data could be heads or tails

10

4. Task Descriptions
Syntax:
TaskDescription ::= ::= ''TASK'' TaskName

InterfacePart
{ BehaviorPart }

{ AttrDescriptionPart }
{ StructurePart }

' 'END'' TaskName

Meaning:
Task descriptions are compilation units used as building blocks for task-level application descriptions.

A task description is divided into four components: (1) interface information, (2) behavioral information, (3)
attributes, and (4) structural information. All these components will be described in later sections. Figure
4 shows a template for a task description, where the ports and signals clauses constitute the interface
information.

task task-name
ports

port-declarations
-- Uaad for conmunication batwean a procaus and a quaua

signals
signal- declarations
-- üaad for communication batwean a procaaa and tha achadular

behsvior
function-predicates
timing-expressions
-- A daacription of th« bahavior of tha taak

a'itributes
attnbute-value-pairs
-- Additional propartxaa of tha taak

structure
process-declarations
queue-declarations
binding-declarations
reconfiguration-statements
-~ A procaaa-quaua graph daacribmg tha mtarnal atructura of a taak

end task-name;

-- REQUIRED

-- OPTIONAL

-- OPTIONAL

— OPTIONAL

-- OPTIONAL

Figure 4: A Template for Task Descriptions

11

5. Task Selections
Syntax:
TaskSelection : := ' 'TASK' ' TaskName

{ PortDeclarationPart }
{ SignalDeclarationPart)

{ BehaviorPart }
{ AttrSelectionPart }

{ ' 'END' ' TasJcName)

Meaning:
Task selections are templates used to identify and retrieve task descriptions from the library.

A given task, e.g., convolution, might have a number of different implementations that differ along
dimensions such as algurithm used, code version, performance, or processor type. In order to select
among a number of alternative implementations, the user provides a task selection as part of a process
declaration, as described in Section 9.1. This task selection lists the desirable features of a suitable
implementation.

Syntactically, a task selection looks somewhat like a task description without the structure part, and all

other components except for the task name are optional. For example, notice that in the syntax of a task
declaration, the interface part (Section 6) requires the declarations of the ports, whereas in a task
selection, the declaration of the ports is optional. Figure 5 shows a template for a task selection. For

brevity, if only the task name is given, the terminating "end task-name" is optional.

task fasA-name -- REQUIRED
ports -- OPTIONAL

port-declarations
-- A Signatur« that must match port diractions and typas of
-- that of a task dascription in th« library.

signals -- OPTIONAL
signal-declarations
~- A Signatur» that must match signal dir«ctions and nam«« of
-- that of a task, dascription in th« library.

beha ior -- OPTIONAL

fun-.iion-predicates
timing-expressions
-- A specification of th« dasirad functionality and timing bahavior of
-- that of a task description in tha library.

attributes -- OPTIONAL

a ttnbute- value-pairs
- ■ Namad (actual) attributas usad to match (formal) attributes of
-- thosa of a taak dascription in tha library.

end task-name -~ optional if only tha task nama is «pacifiad

Figure 5: A Template for Task Selections

^^

12

6. Interface Information
Syntax:
InterfacePart ;:= PortDeclarationPart { SignalDeclarationPart }

Meaning:
The interface portion of a task description or a task selection provides information about the ports of the
processes instantiated from the task and the signals used by the processes instantiated from the task to

communicate with the scheduler.

6.1. Port Declarations

:= -PORTS" PortDeclaration_Listoömicolon ^

:= PortNaine_Listc

PortName_Listc

:= Identifier

:= { ProcessName

1 'IN' ' TypaName
> ^UT' ' TypeName

} PortName

Syntax:
PortDeclarationPart

PortDeclaration

PortName

GlobalPortName

Examples:
ports

inl: in haada;
outl, out2 : out tails;

Meaning:
A port declaration specifies the direction of the data movement and the type of data moving through the
port.

Port names must be unique within a task. Outside the task, ports are identified by their global name,
obtained by prefixing the name of a process (instance of a task) to the name of the port, e.g., pi .out2.

6.2. Signal Declarations

Syntax:
SignalDeclarationPart

SignalDeclaration ::=

; := ' 'SIGNALS' '
SignalDeclaration_List

SignalName List „T^,.1 ' — comma
SignalName_ListCORBaa '
SignalName List „„„. ' " — comma

aamlcolon

^IN" ,
''OUT'' ,
^IN'' ' ^OUT'

SignalName

GlobalSignalName :

Examples:
signals

Stop, Start, RÄSum«: in;
RangaError, FormatError: out;
Raad: in out;

Identifier

{ ProcessName } SignalName

13

Meaning:
Signals are special messages exchanged between a process and the scheduler. A signal declaration
specifies the direction of the signal. An in signal is a message that a process can receive from the
scheduler; an out signal is a message that a process can send to the scheduler; an in out signal is used

for both directions of communication.

All signal names must be unique within a task. Outside the task, a signal is identified by compounding the

name of a process (instance of a task) with the name of the signal, e.g., pi.Restart.

6.3. Rules for Matching Selections with Descriptions
If a task selection provides a port declaration clause, the port names provided in the task selection

override the port names provided in the task declaration. The port declaration lists must otherwise be

identical, i.e., the number, the order, the directions, and the types must be identical.

If a task selection provides a signal declaration clause, the clause must be identical to that provided in the

task description, i.e., the names, number, and directions must be identical.

3rr=

14

7. Behavioral Information
Syntax:
BehaviorPart :;= x'BEHAVIOR'' FunctionPart TimingPart

FunctionPart ::= { V,REQUIKES'' '"' predicate '"' ^ \-' ' }
{ ''ENSURES'' ,"' predicate x"' ,^•'' }

TimingPart ::= { ''TIMING'' TimingExpression » \«' ' }

predicate Larch Predicate1

Meaning:
The behavioral information part specifies functional and timing information about the task.

The functional information part of a task description consists of a pre-condition (requires) on what is
required to be true of the data coming through the input ports, and a post-condition (ensures) on what is

guaranteed to be true of the data going out on the output ports.

The timing information part of a task description consists of a timing expression following the keyword
timing. The timing expression describes the behavior of the task in terms of the operations it performs on

its input and output ports.

The formal meaning of the behavioral information is essentially based on first-order logic. In what follows,

we give only an informal meaning of the individual parts and their combination. See[1] for the formal

meaning.

7.1. Function Part
The functional information of a task description describes the behavior of the task in terms of predicates
about the data in the queues, before and after each execution cycle of the task. The Larch Shared

Language is used as the assertion language in the predicates of these clauses. We restrict this section to
a very brief outline of Larch's approach.

Larch [2, 3] uses a two-tiered approach to specifying program modules: a trait defines state-independent

properties, and an interface specification defines state-dependent properties of a program. A trait is
written in the Larch Shared Language (LSL), and it provides the assertion language used to express and
define the meaning of the predicates of an interface specification.

For a program module such as a procedure, a Larch interface specification is written in a Larch Interface

Language and contains predicates about the states before and after the execution of the procedure. The
Larch Interface Language (LIL) to be used is specific to the programming language in which the

procedure is written (e.g., C, CommonLisp, or Ada.)

Essentially, a first-ordör assertion, [2J

15

7.1.1. Larch Traits and Specifications
Figure 6 depicts a Larch (two-tiered) specification of queues with "out" and "get" operaticns. The top part
of the specification (Figure 6.a) is a trait written in LSL used to describe values of queues. A set of

operators and their signatures following introduces defines a vocabulary of terms to denote values of a
type. For example. Empty and lnsert(Empty, 5) denote two different queue values. The set of equations

following the constrains clause defines a meaning for the terms; more precisely, an equivalence relation
on the terms, and hence on the values they denote. For example, from the above trait, one could prove

that First(Rest(lnsert(lnsert(Empty, 5), 6))) = 6.

The bottom part of the specification (Figure 6.b) contains two interfaces written in a "generic" Larch

interface language. They describe the functional behavior of two queue operations, "put" and "get"
(queue operation names are used to write timing expressions, which are described in Secticri 7.2.3.) A

requires is a pre-condition on the state of an operation's input data that must be true upon operation
invocation; an ensures is a post-condition on the state of an operation's input and output data that is
guaranteed to be true upon operation termination. An omitted predicate is taken to be true. The

specification for "get'' states that "get" must be called with a non-empty queue and that it modifies the
original queue by removing its first element and returning ;t.

QVals: trait
introduces

Eiapty. —» Q
Inaart : Q, E —» Q
First: Q -» E
R«st: Q -♦ Q
iaEmpty: Q -> Bool
lain: Q, E —> Bool

constrains Q so that
Q generated by [Empty, lna«rt]
for all q: Q, a, «1: E

First(Insert(Empty), «)) = «
First (Ins«rt (q, «)) = if i8Empty(q) then a else First (q)
R«st (Insart (q, a)) = if i8Einpty(q) then Empty else Insart (Rast (q) , a)
xsEmpty(Empty) = trua
isEmpty(Insart(q, a)) • falsa
isln(Empty, a) = falsa
isln(Insart(q, a), al) = (a = al) j isln{q, al)

a. A Trait for Queue Values

Put - oparation (q: quaua, a: alamant)
ensures a >t, = insart (q, a)

Gat ~ oparation (q: quaua) raturns (a: alamant)
requires -isEmpty (q)
ensures a -t = Rast(q) & a = First (q)

b. Interfaces for Queue Operations

Figure 6: A Larch Two-Tiered Specification for Queues

: ..J
1
.: -—T-^-"

16

7.1.2. Functional Specification of a Task
We use a similar approach as Larch's for the specification of the functional behavior of a task. That is, we
view the task as a procedure whose input and output "parameters" are defined by the ports of the task.
A requires clause states what is required to be true of the data coming through the input ports; an
ensures clause states what is guaranteed to be true of the data going out through the output ports.

If one were to view each cycle of a task as one execution of a procedure, the requires and ensures are
exactly the pre- and post-conditions on the functionality of that cycle. An omitted predicate is taken to be
true.

These are not assertions about the queues connected to the ports. For instance, an assertion could be
made that a datum of some type was sent to an output port. It cannot be asserted that the datum is in the
associated output queue, at the end ot the task execution, because it could have been removed by then.

It is up to the impiementor ot a task to verify that the functionality of the task satisfies the requires and
ensures predicates. A task description writer and user may assume that the task impiementor performed
such verification either formally or informally.

For example, consider the matrix multiplication task in Figure 7. The task takes input matrices from two

queues and outputs the result matrix on an output queue. The. requires clause states that the task
impiementor may assume that the number of rows of the matrix entering through the port in1 equals the

number of columns of the matrix entering through in2. The ensures clause states that the result of
multiplying the two input matrices is output through the output port.

task multiply
ports

inl, in2 : in matrix;
outl: nut matrix;

behavior
requires "rows (Firat (inl)) = cols (First (in2))" ;
ensures "Insert(outl, First(inl) * First(in2))'

end multiply;

Figure 7: A Matrix Multiplication Task

7.2. Timing Part
Processes remove data from their input queues and store data into their output queues following a task-
specific pattern provided by a timing expression. A timing expression describes the behavior of the task

in terms ot the operations it performs on its input and output ports; this is the behavior of the task seen
from the outside.

7.2.1. Time Literals

17

Syntax:
TimeLiteral

Date

years

months

days

TimeOfDay

hours

minutes

seconds

TimeUnit

TimeZone

IndeterminateTime

Examples:
5:15:00 es!

15.5 hours ast

{ Date ' ,@' ' } TiroeOfDay
IndeterminateTime

years ,V' months ''/''

IntegerValue

IntegerValue

IntegerValue

{ { hours '':'') minutes
RealValue TimeUnit ,
IntegerValue TimeUnit ,

IntegerValue

IntegerValue

IntegerValue ,
RealValue

1 ' YEARS' ' ,
1 MONTHS' ' ,
''DAYS'' f

''HOURS'' ,
''MINUTES'' ,
' 'SECONDS' '

''EST''
''CST''
' 'MST' '
''PST''
''GMT''
''LOCAL'

{ TimeZone)

deys

-- range is 1..12

-- range is 1..31

' ' : ' ' } seconds ,

-- range is 0..23

-- range is 0..59

-- Eastern Standard Time
-- Central Standard Time

-- Mountain Standard Time
-- Pacific Standard Time

-- Greenwich Meridian Time
-- Local Time

-- Application Start Time

2:10

2.1667 minutes

-- An absolut« tim«: 5 hours 15 minutas Eastam Standard Tim«.

-- An application relativ« tim«: 15 hours and 30 minutas

-- aftar th« start of th« application.

-- An «v«nt ralativ« tim«: 2 ininut«8 10 saconds

-- aft«r som« basa «vant.

-- Approximataly tha saxna avant ralativa tima as abova

-- 10 saconds is l/6th of a minuta.

* -- An indatarminata point in tima.

Meaning:

Time values are used to specify points in time. These can be either (1) absolute, i.e., independent of the
application, in which case they must be followed by the name of a time zone; (2) relative to the application
start time, in which case they must be followed by the fictitious time zone "ast"; or (3) relative to some
prior event in the application, in which case neither a date nor a time zone is allowed.

The notation allows for alternative ways of denoting time of day or time elapsed between events. Time

can be expressed in the familiar formats "HH:MM;SS", "MM.SS", or just "SS". Thus, a plain number

represents a number of seconds. Time can also be expressed as a multiple of other time units by writing

18

a number followed by a unit name such as seconds, minutes, hours, days, months, or years. The use

of seconds as a time unit is redundant, but allowed for completeness' sake. The format adopted by a
user might depend on the nature of the application, on any standard conventions in the application

domain, on the magnitude of the time scale, on the precision required, or simply on aesthetic, personal

preferences.

7.2.2. Event Expressions and Time Windows

Syntax:
EventExpression ::= GlobalPortName

{ y ' . ' ' QueueOperation }
{ TimeWindow }

' 'DELAY' ' TimeWindow

TimeWindow : := *'[' ' TimeValue ' \ '' TimeValue y y]' '

QueueOperation ::= Identifier -- Configuration dependent

Examples:
inl -- An op«ration (g«t, by d«fault) on th« qnau« faading port inl

inl.gat -- Ax» opÄration taking a «yst«™ default tim« to compiat«

inl.g«t[5, 15] -- An Operation taking b«twaan 5 and 15 »«cond« to coraplet«

d«lay[10, 15] -- A delay interval lasting between 10 and 15 seconds

delay[*, 10] -- A delay interval taking at most 10 seconds

delay[10, *] -- A delay interval taking at least 10 seconds

Meaning:
Queue operations performed by the processes constitute the basic events of an application description.

An event expression represents a queue operation on a queue attached to a specific port, taking a
variable amount of time to complete. A pseudo-operation, "delay", is used to represent the time

consumed by the process between (real) queue operations.

The name of the queue operation is optional. If the name is not given, a default queue operation is

assumed: "get" for input ports, "put" for output ports. The complete list of queue operations is
configuration dependent, as described in Section 10.4.

Time windows are used to describe the duration of a queue operation or the delay between two

operations. Time windows are denoted by a pair of time values [Trn|n,Tmax] defining the boundaries of the

interval.

The time window associated with a queue operation describes the minimum and maximum time needed
to perform the operation. This time window is optional, and if it is missing, a configuration dependent,

default window is assumed, as described in Section 10.4. Intervals of time between queue operations are
denoted by a "delay" operation whose time window describes the minimum and maximum time

consumed by the process in between queue operations.

19

7.2.3. Timing Expressions

Syntax:
TimingExpression : := { ' 'LOOP'') CyclicTimingExpression

= ParallelEventExpression_List#pacmB

= BasicEventExpressior^List^^, v#rt;Lcal bftr

CyclicTimingExpression

ParalleIEventExpression

BasicEventExpression = EventExpression ,
{ Guard ^=>'' } ' (' CyclicTimingExpression ')'

Guard :;= ''REPEAT'' IntegerValue ,
'BEFORE'' TimeValue , -- Absolute time
'AFTER'' TimeValue , -- Absolute time
'DURING' ' TimeWindow , -- Tniin is Absolute time
'WHEN'' "" predicate ""

predicate : Larc^ Predicate2

Examples:
inl || in2[10/15] — Two parallal input op«rationa, starting simultanaously

inl[0,5] dalay[10,15] outl -- Two naquantial inputr oparation» with an intarvaning dulay

repeat 5 => (ml (0,5] dalay[10,15] outl) -- Sama as abova but as a cycla rapaatad fiva timas

before 18:00:00 local =>{...) -- A saquanca constrained to start bafora 6 pm

after 18:00:00 local =>(...) -- A saquanca constrainad to start aftar 6 pm

during [18:00:00 local, 12 hours] =>(...) -- A saquanca constrainad to start at night

when ~«mpty(inl) and ~ampty(in2) => ({inl.gat || in2.gat) outl.put);
-- A saquanca constrainad to start aftar both input quauas hava data.

loop when ~«nipty(inl) and -ampty(in2) => ((inl.gat || in2.gat) outl.put) ;
-- Tha sama saquanca as abova but rapaatad indafmataly.

Meaning:
A timing expression is a regular expression describing the patterns of execution of operations on the input
and output ports of a task. The keyword loop can be used to indicate that the pattern of operations is
repeated indefinitely.

A timing expression is a sequence of parallel event expressions. Each parallel event expression consists

of one or more event expressions separated by the symbol "||" to indicate that their executions overlap.
Since the expressions might take different amounts of time to complete, nothing can be said about their

completion, other than a parallel event expression terminates when the last event terminates.

Parallel events start simultaneously but are not necessarily completed at the same time. In the
expression "(inl || in2{10,15l)", the duration of the input operation on port inl defaults to some
configuration-dependent value (See Section 10.4) and might be shorter or longer than the explicit

duration of the input operation on port in2, i.e., between 10 and 15 seconds.

A basic event expression is either a queue operation (including "delay") or a timing expression enclosed
in parentheses. The latter form also allows for the specification of a guard, an expression specifying the

conditions under which a sequence of operations is allowed lo start or repeat its execution.

"-'Essentially, a first-order assertion, [2]

20

Guard

repeal

before

alter

during

when

Description

This guard indicates repetitions ot a timing expression. The number of repetitions is
a non-negative integer value.

This guard is followed by an absolute time value representing the latest start time
allowed. If the deadline does not include a date, i.e., it is just a time of day, and the
deadline has passed, then the sequence Is blocked at most until midnight of the
current date and will unblock at "00.00:00" of the following day. The task is
terminated if a dated deadline has passed.

This guard is followed by an absolute time value representing the earliest start time
allowed If necessary, the sequence is blocked until the deadline. If the deadline
does not include a date, i.e., it is just a time of day, then the sequence is blocked at
most 24 hours. For example, if it is "00:00:00.000" and the deadline is
"23.59.59.999" the sequence will unblock at the end of the day.

This guard Is followed by a time window during which the sequence is allowed to
start. The first value is the earliest start time allowed and must be an absolute time
value; the second value is the latest start time allowed and can be an absolute time
value or a time value relative to the former.

This guard describes what is required to be true of the state of the system (i.e., time
and queues, see Section 10.1) before the sequence is allowed to start. It is a pre-
condition for starting the sequence.

7.2.4. Restrictions on Time Values and Time Windows
Although the syntax allows both absolute and relative time values to appear in either of the two
boundaries in a time window, not all of the possible combinations make sense:

1. A date in a time value that uses the "ast" time zone is meaningless.

2 In the time window attached to a queue operation, including "delay", the time values must
be relative (i.e., no dates or time zones allowed) and are interpreted relative to the start of
the operation.

3. In the time window of a during guard, the first time value (T) must be absolute. The
second time value (Tmax;
relative to T.

can be absolute or relative. In the latter case, the time value is

mirv

7.3. Rules tor Matching Selections with Descriptions
The meaning of the behavioral information is a predicate, M^R, T) => M^E, T), where R is the requires

predicate, E is the ensures predicate, T is the timing expression, and Mf is the meaning function
mapping a predicate and timing expression into a boolean [1].

A task description matches a task selection if the predicate associated with the behavioral information of
the task description implies that of the task selection. If no timing expression appears, the predicate

simplifies to R => E, and that of a task description must imply that of the task selection.

Currently there are no facilities to check these implications and timing expressions, so for the time being
the behavioral information part of a task description is treated as commentary information. However,

timing expressions are used to simulate the behavior of a task and are therefore required by the simulator

[6].

21

8. Attributes
Syntax:
AttrDescriptionPart

AttrDescription

AttrSelectionPart

AttrSeiectxon

At trName

GlobalAttrName

AttrDisjunction

AttrConjunction

AttrPrimary

AttrTer-^

Attrvalue

OtherAttrValue

''ATTRIBUTES'' AttrDescription_Listawaicolon

AttrName " = ' ' AttrValue

' 'ATTRIBUTES'' AttrSelection_List(iamico;Ljn ' '

AttrName ' ' = '' AttrDisjunction

Identifier

{ ProcessName * '. '' } AttrName

AttrConjunction ,
AttrDisjunction ''OR'' AttrConjunction

AttrPrimary,
AttrConjunction ''AND'' AttrPrimary

AttrTerm ,
' 'NOT'' AttrTerm

AttrValue ,
'(' AttrDis^unction ')'

OtherAttrValue ,
'(' OtherAttrValue List ')' , — comma ' '
ModeAttrvalue ,
ImplementationAttrValue ,
ProcessorAttrvalue ,

IntegerValue ,
RealValue ,
StringValue ,
TimeValue

-- Attribut«« in a task declaration

-- Attributaa in a task s«l«ction

Examples:
attributes

author = "jmw";
color = ("r»d", "whita", "blu«");
implomantation ■ "/usr/jmw/alv/cowcatch«r.o";
Que'i#_Size = 25 ;

attributes
author = "jmw" or "mrb";
color «a "rad" and "blua'r and not {"gr««n" or "yallow");
procassor ■ Warpl;
mod« = groupad by 4;

Meaning:
Attributes specify miscellaneous properties of a task. They are a means of indicating pragmas or hints to
the compiler and/or scheduler. In a task description, the developer of the task lists the possible values of
a property; in a task specification, the user of a task lists the desired values of a property. All attribute

values used in matching task selections with task descriptions must be constants, computable before
execution time, i.e., tasks and their implementations are static properties of an application.

Example attributes include; author, version number, programming language, file name, and processor

type. There may be as many attributes as desired. Attributes defined in other tasks can be accessed by
prefixing the name of the attribute with the name of a process instantiated from that task, e.g., pi.author.

22

The name of an attribute can appear in any context in which its value can appear. For instance, if the

user defines an at 'e "Gueue_Size" as in the examples then "Queue_Size" can appear anywhere an
integer value is e- x*. This permits the user to name say. a jjueue size and use the name to declare

queues with idenu, J size in a number of task descriptions. Another use is to instantiate "families" of
tasks, i.e.. tasks that sha;H the same value for some attribute, as shown in Figure 8.

process
Maatar_Proc«aa: task Mast«r_Ta8k

attributes
Key_Nain«i = some value,
... other attributes, maybe . .

end Maat«r_Taak.;

pi: task f oo
attributes
K«y_Nam« = MaBt«ir_Proc»a8 . Kay Nama;
... other attributes, maybe ...

end foo;

p2 : task bar
attributes
K«y_Nan»« = Maatar_Proceaa . Kay Naivi«;
... other attributes, maybe ...

end bar;

-- A taak aalaction

-- Sam« value as Maatar Proceaa

-- Same valu« aa Maatar Procaaa

Figure 8: Use of Global Attribute Names

The syntax and semantics of the attribute values are attribute dependent. If the attribute is not predefined

In the language, the values are treated as uninterpreted numbers, time values, or strings, as the case
may be. and compatibility is based on value equality. If the attribute is predefined in the language, the

syntax for the legal values is given in Section 10.2. and compatibility is attribute dependent.

The following attributes are predefined in the language: "mode" (specifies the mode of operation for a
deal or merge predefined task); "implementation" (specifies the location of the task implementation); and
"processor" (specifies the processor type on which the implementation can run). These are described in
Section 10.2.

8.1. Rules for Matching Selections with Descriptions
If a task selection specifies an attribute not present in a task description, no match occurs, i.e , the
compiler skips this description and continues searching for a candidate. If a task description provides an

attribute not specified in a task selection, the attribute is ignored.

if a task selection provides a predicate (a disjunction) for an attribute, a matching task description must

provioe values that satisfy the predicate, i.e., the disjunction yields true when evaluated in the context of
the values declared for the attribute. If a task description provides a single value for an attribute, a
matching task selection must provide exactly that value.

23

9. Structural Information
Syntax:
Structure?art

StructureClause

ReconfigurationClause

'STRUCTURE''
StructureClause_List8 a

{ ReconfigurationClause-List Cä }

'PROCESS' ' P :ocessDeclaration_ListSÄmicolon
, '

' QUEUE' ' QueueDeclaraticn_Listflamicolon ' y;' '

'BIND' ' PortBinding^List,,.^^^^ ";"

:- ''RECONFIGURATION''
Reconf iguration_Listfl<Maicolon ' \- "

Meaning:
Process and queue declarations appear under the keyword structure in a task description. These

declarations define a graph in which processes are the nodes, and queues are the links. These graphs
depict the internal structure of a compound task. The structure part of a task description provides the

means for developing hierarchical task descriptions.

9.1. Process Declarations

Syntax:
ProcessDeclaration ::= ProcessName List skSelecrion

Examples:
pi: task obstacl«_findar;
p2 : task obfltacl«_f indar ports f oo: in, bar: out end obstacl« findar;
p3, p4; task obfltacl«_f indar attributes author="mrb" end obatacl« findar;

Meaning:
An instance of a task is bound to each process's name. The name of a task is the minimal part of a task
selection. Local, actual names (e.g., ports "too"' and "bar" in the example) can be introduced by
providing a port declaration, provided that the types of ports specified in the task declaration are identical
to those provided in the task selection. If they are left out, the formal names used in Use task description
are used instead.

9.2. Queue Declarations

Syntax:
QueueDeclaration

QueueDefinition

QueueNariLe

QueueSize

GiobalQueueNaitv i

:= QueueName { QueueSize } ,,:', QueueDefinition

:= GlobalPcrtName
' '>'' ProcessName ''>' '

GlobalPortName
Glob?IPortName

' '>'' TransformExpression ''>' '
GlobalPortName

:= Identifier

,_ \ y^i, integerValue '']''

:= { ProcessName ''.''■ } QueueName

24

Examples:
ql: pi > > p2 ;

ql: pi > (2 1) transpose > p2 ;

ql[100]: pi > xyr > p2 ;

-- Two ports conn«ct«d through an unboundad qu«u«
-- Th« two port« must hav« th« sama typ«

-- Two ports connÄCtad through an unbounded qu«ua
-- Th« data arrays ara transposad in th« quaua

-- Two ports conn«ct«d through a boundad (size = 100) qu«ua
-- Data ar« transformed in th« qu«u« by a process ' 'xyz' '

Meaning:
A queue definition establishes a logical link between two ports that communicate by passing data from the
first port (source) to the second port (destination). The queue name must be unique within the task

description defining the process-queue graph. The (optional) queue bound declares the maximum
number of elements that will be stored in the queue at any one time. If a queue is full when a "put"

operation is attempted, the process trying to store the data waits until the queue has space for the new
item. If the queue bound is not provided, a configuration dependent, default queue length is assumed, as
described in Section 10.4.

When establishing a logical connection, the ports are checked for type compatibility. Non-union types are

compatible if they have the same name. Union types are compatible if the source set is a subset of the
destination set. A non-union source type is compatible with a union destination type if the source type

name is a member of the destination set.

If the types are not compatible, the user must provide a data transformation operation that will convert
objects of one type into the other as described below

9.3. Data Transformations
Data transformations are operations applied to data coming from a source port in order to make them
acceptable to a destination port.

A data transformation is required if the input and output port types are not compatible. Such

transformations are needed if, for instance, the types have the same structure but the data are in the
wrong format, e.g., turning a square array on its side or converting between floating-point formats.

Complicated transformations can be written as separate tasks, in which case an appropriate task must be
selected and instantiated as a process, and the process name must be specified in the queue declaration.
Simple transformations can be specified directly in the queue declaration.

9.3.1. Off-Line Data Transformations
Complex data transformations can be specified as regular tasks by writing a procedure in some
programming language suitable for either the buffers or one of the heterogeneous processors and
entering an appropriate task description in the library. These data transformation tasks must declare

exactly one input port and one output port.

task cornar_tuming
ports

inl : in landinÄrk_rüw_ma jor;
outl : out lajidmark_column_ina jor;

attributes
implÄmQntation = "/usr/mrb/acreatch.o"
procasaor = buffar_proc«8flor;

end cornar turning;

25

9.3,2. In-Line Data Transformations

Syntax:
TransformExpression

TransformOp

spac«

ReshapeOp

SelectOp

TransposeOp

RotateOp

ReverseOp

DataOp

VectorArgument

ArrayArguinent

Examples:

:= Transf orTnOp_LisT:

:= ReshapeOp ,
SelectOp ,
TransposeOp,
RotateOp,
ReverseOp,
DataOp

=■ VectorArgument ' 'RESHAPE' '

- ArrayArgument v 'SELECT' '

= VectorArgument "'TRANSPOSE''

= ArrayArgument ''ROTATE''

= IntegerValue ''REVERSE''

= Identifier

= '(' IntegerValue_List8 Ä ')'
'(' IntegerValue '%IDENTITY''
'(' IntegerValue ''INDEX'' ')

y)'

-- Empty vector

:= VectorArgument ,
'(' ArrayArgument_List spaca ')

If the input is a 2x2x3 3-dimensional array:
(3 4) reshape

(12) reshape

-- rashapas tha input array into a 3x4 2-diman8ional array.

-- unravals tha array.

If the input is a 2-dimenbional array;
({5 2 3) (*)) select -- ganarataa an array consisting of rows 5 2 and 3, in that ordar.

((*) (5 2 3)) select -- ganarates an array consisting of columns 5 2 and 3, in that ordar.

(2 1) transpose — Transposaa tha array in tha normal mannar.

(1 -2) rotate

Additional examples:
(5 identity)

(5 index)

2 reverse

-- Rotatas aach row laft 1 position and than rotatas
-- aach column of tha rasult down 2 positions.

-- Ganarataa tha vactor (11111).

-- Ganaratas tha vactor (12 3 4 5).

-- Ravarsas tha alaraants along tha 2nd coordinata of an input array.

26

Meaning:
The most common cases of data transformations are expected to be n-dimensional array manipulations.
For these operations, the language provides a short-cut: it is not necessary to write task implementations,
i.e., program code, and task descriptions and to enter them in the library. It suffices to specify the

transformations as part of the queue declaration.

In-line data transformations are specified in post-fix notation, interpreted left-to-right, with arguments

preceding the operators, and with the input port providing the initial argument. In general, the arguments

are multi-dimensional arrays (nested vectors) of scalar data values.

Operator

integer identity

/nfeper index

vector reshape

array select

vector transpose

Description

generates the vector (1 1 ... 1 1).

generates the vector (1 2 ... N).

unravels an array (i.e., linearizes it) and then reshapes into an array with the
dimensionality of the argument vector. The input array is linearized in row order, i.e.,
by scanning all of the positions varying the highest dimension first. This operation
must be specified if the input and output array do not have the same shape but the
array elements are in the right order when the arrays are unraveled.

extracts (slices) pieces of a data array. If the input is a vector, (5) select represents
the 5th element, and (5 2 3) select is a new vector consisting of the 5th, 2nd, and 3rd
elements in that order. A vector of the form "(*)" selects all components along one
dimension.

permutes the dimensions of a data array according to the argument vector (V). The
ith coordinate of the input array becomes coordinate V[i] of the result.

scalar_or_vector rotate
specifies rotations of n-dimensional data arrays. The operator is preceded by an
argument which must be either a scalar (signed) integer value or a parenthesized
array of (signed) integer values. The magnitude of the values specify the number of
positions to rotate the input data, and the sign of the values specify the direction of
the rotation: a positive amount indicates rotation towards lower indices.

A scalar argument specifies how to rotate an input vector. An n-length vector of
scalars specifies how to rotate an n-dimensional input array along each dimension
(one element per dimension). An n-length vector of vectors argument specifies how
to rotate an n-dimensional input array along each dimension (one top level vector per
dimension) and within each dimension, how to rotate each "row" (one element of a
second level vector per row.)

For example, consider the transformation "((1 2 0) (-3 -4)) rotate" applied to a 2-
dimensional 3x2 input array. The vector (12 0) specifies how to rotate the rows; the
vector (-3 -4) specifies how to rotate the columns. The first row is rotated left 1
pos'tion, the second row is rotated left 2 positions, the third row is left unchanged.
Then the first column is rotated down 3 positions, and finally, the second column is
rotated down 4 positions.

integer reverse reverses the order of the elements of an array along an arbitrary coordinate specified
by the integer argument. If the input is a vector, the argument must be "1". In the
transformation "2 reverse", if the input is a 2-dimensional array, this operation
shuffles columns; if the input is a 3-dimensional array, this operation shuffles planes.

Data Operations scalar operations applied to each element of an input array. The set of operations is
configuration dependent. The initial set will include operations to round, truncate, or
otherwise convert between various integer and floating-point formats, as described in
the configuration file, Section 10.4.

This is a first attempt at defining the set of the operations a user is likely to perform on n-dimensional

27

arrays. The guiding principle is to keep the notation simple; more complex transformations should

probably be specified as off-line transiormatlons.

A data transformation operation is more than just a way to achieve type compatibility between ports. It
also serves to specify operations that would be inappropriate or inefficient if written as part of one of the

tasks. For example, consider an application that requires scanning an array in different directions (e.g.,
first by rows, then by columns) and performing some operation on each element (e.g., computing the
average of the neighbors). Rather than writing several versions of the task, one for each traversal

pattern, one could simply write one version of the task, and then instantiate it as many times as
necessary, each process so instantiated could then take its input arrays from queues that perform the
appropriate transposition, as in "q1:p1>(2 1) transpose>p2". Arrays produced by p1 are transposed

while in the queue, before they are delivered to p2.

9.4. Binding Port Names

Syntax:
PortBinding

ExtPortName

IntPortName

- ExtPortName ' , = ' ' IntPortName

= PortName -- External port

= GlobalPortName -- Internal port

Example:
bind
p_daal.ini = obBtacl«_find«r.ini;

p_marg«.outl = obBtaclÄ_f ind«r.outl;

Meaning:
A port binding maps a port of the process-queue graph defining the internal structure of a task to a port
defining the external interface of a task.

9.5. Process-Queue Graph Reconfiguration

Syntax:
Reconfiguration ::= ''IF'' RecPredicate ''THEN''

rocessTerminati

Structure List

{ ProcessTermination-List acÄ }

"apac*
, 'END' ' * 'IF"

ProcessTermination ::= ''REMOVE'' GlobalFrocessName List — comma

RecPredicace ;:= RecDisjunction ,
RecPredicate ''OR'' RecDisjunction

RecDisjunction ::= RecConjunction ,
RecDisjunction ,'AND'' RecConjunction

RecConjunction ::= RecRelation ,
''NOT'' '(' RecPredicate ')'

28

RecRelation RecTerm ' , = ' ' RecTerm , --- Equal

RecTerra ' y /■= ' RecTerm , -- Not equal

RecTerm '*>' RecTerm , -- Greater

RecTerm ''>= ' RecTerm r -- Greater than or equal

RecTerm ' '<' ' RecTerm , -- Less
RecTerm ''<= ' RecTerm , -- Less than or equal

IntegerValue t

RealValue ,
StringValue
TimeValue

RecTerm

Examples:
if CurrQnt_Tiin« >= 6:00:00 local and Current_Tiin« < 18:00:00 local
then

process
p vision: task vision attributes procassor = warp2 ;

queue
cj_vi8ion_road: p_deal.out3 > > p_vi8ion.ini;
<^_obstaclÄS : p_viflion . outl > > p_m«rg« . in3;

end if;

Meaning:
A reconfiguration statement is a directive to the scheduler. It is used to specify changes in the current

structure, i.e., process-queue graph, of the application and the conditions under which the e changes
take effect. Typically, a number of existing processes and queues are substituted by new processes and

queues which are then connected to the remainder of the original graph. The reconfiguration predicate is
a boolean expression involving time values, queue sizes, and other information available to the scheduler
at run time.

Notice that nothing is being said about the internal representation of time values- They are definitely not

like integer or real values -- time values cannot be mixed with regular numeric values in an expression. In
addition, currently the language does not provide any arithmetic operators for time values. However, a

few predefined system functions provide for the computation of past or future time values, as described in
Section 10.1.

29

10. Predefined Language Facilities

10.1. Functions

Syntax:
FunctionCall ::= FunctionName { FunctionParameters }

FunctionName ::= >^CURRENl^TIME'' ,
x ^MINUSJTIME' ' ,
' ^PLUS^TIME" ,
, ^CURREN^SIZE' '

FunctionParameters ::= M' Parameter List __ ') ' -- Function dependent

Parameter ::= IntegerValue ,
RealValue ,
StringValue f

TimeValue

Examples:
Plus_TiTn«(Curr«nt_Tim«, 2.5 hours) — 2.5 hours from th« currant tim«
Currant_Siza(Kast«r_Proc«flB .Data_Port) -- th« siz« of a qu«u« f««ding a port

Meaning:
The following functions are predefined in the language: "currentjime", "minusjime", "plusjime", and

"current_size"

The function call "Current_Time" returns the current time as an absolute date in the local time zone.

The function call '■Minus_Time(TimeValue1,TimeValue2)" returns the time value obtained by subtracting
TimeValue2 from TimeValue^ The following cases are allowed:

1.11 both parameters are absolute times, the result is a relative time, i.e., a duration.
TimeValue1 must be later than Time\/alue2.

2. If TimeValue1 is an absolute time and TimeVaiue2 is a relative time, the result is an
absolute time in the same time zone as TimeVaiue.,.

3. If both parameters are relative times, the result is a relative time. TtmeValue1 must be
larger than TimeValue2.

The function call "Plus_Time(TimeValue1,TimeValue2)" returns the time value obtained by adding

TimeValue2 to TimeVaiue^ The following cases are allowed:
1. If one parameter is an absolute time and the other parameter is a relative time, the result is

an absolute time in the same time zone.

2. If both parameters are rela^ve times, the result is a relative time, i.e., a duration.

The function call "Current_Size(GlobalPortName)" returns the current number of elements stored in the
queue associated with a given port.

Calls to these functions can appear anywhere a value of the same kind as the return value can appear.
That is, a call to a function returning an integer, a real, a string, or a time value can appear instead of an

integer, a real, a string, or a time value, respectively.

30

10.2. Attributes
The following attributes are predefined in the language: "mode", "implementation", and "processor".

10.2.1. Mode Attribute

Syntax:
ModeAttr ::= ^'MODE'' »'='' ModeAttrValue

ModeAttrValue ::= Identifier

Meaning:
The values of the "mode" attribute are identifiers denoting the operation performed by one of the

predefined tasks: "broadcast", "merge", and "deal", as described in Section 10.3.

The formal specification of the operation is given by the behavioral part of the task description. The

identifiers used as values for the "mode" attribute are just a convenient shorthand to select what are
expected to be frequently used tasks. Users are more likely to select predefined tasks by specifying a
mode value (i.e., an identifier) than by specifying a timing expression or a function predicate.

The following identifiers are representative of typical values for the "mode" attribute: "random", "fifo",
"round_robin", "by_type". "balanced". "grouped_by_2". The actual values are implementation
dependent.

10.2.2. Implementation Attribute

Syntax:
ImplementationAttr ::= ''IMPLEMENTATION'' ''='' implementationAttrValue

ImplementationAttrvalue ::= StringValue

Examples:
impl«in«ntation = "/uar/cbw/htttO/damo . o" ;

Meaning:
The value of the implementation attribute is the name of the file containing the actual object code. The
format of a file name may vary with the host operating system.

10.2.3. Processor Attribute

Syntax:
ProcessorAttr ::= ''PROCESSOR'' v^='' ProcessorAttrValue

ProcessorAttrValue ::= Identifier ,
Identifier '(' Identifier List _ ')'

Examples:
procaseor = n»68000 (m68020, m68032);
procaaaor ■ m68020(pl, p2, p3);
procÄSöor = m68032(p4, p5);
procassor = ibml4l01;
procassor = warp(warpl, warp2);
procÄBaor = buff«r_procoB8or;

31

Meaning:
The configuration of the heterogeneous machine specifies the different values for the "processor"
attribute, including names of classes of processors as well as names of individual processors, as
illustrated above. See Section 10.4 for details about specifying the configuration of the heterogeneous

machine.

The value of the "processor" attribute can vary in specificity by using a processor class name or an

individual processor name. For example, WARP means any Warp processor; WARP1 means that Warp
processor.

If the user specifies the name of a class of processors as the valu0 of the "processor" attribute, any one
of the members of the class can be used to execute the task. If the user specifies a class name and a set

of members (in parentheses), any one of the members of this set can be used to execute the task. The
members of the set must be a subset of the class as defined by the configuration.

10.3. Tasks
The following tasks are predefined in the language: "broadcast", "merge", and "deal".

10.3.1. Broadcast
"broadcast" is a task with one input port and as many output ports as needed. Input data are replicated
and sent to all the output ports. Port names are in1 for the input port and outl. out2 outN for the

output ports.

10.3.2. Merge
"merge" is a task with one output port and as many input ports as needed. The type of the output port is
the union of all the input types. Input data items are merged and sent to the output port. Port names are
ml, in2 /n/Vfor N input ports and outl for the output port.

A merge discipline must be provided as a value to the "mode" attribute, as described in Section 10.2.1.
Possible values include "random" (unordered), "fifo" (ordered by time of arrival to the merge process),
and "roundrobin" (one from each input port and repeating.) Because of transmission delays, the order

of arrival of the data might differ from the order in which the data were sent out. A FIFO merge process
uses time of arrival, not time of creation, to order the data.

10.3.3. Deal
"deal" is a task with one input port and as many output ports as needed. The type of the input port is the
union of all the output types. Input data items are sent to one output port. Port names are in1 for the
input port and outl, out2,..., outNior the output ports.

A deal discipline must be provided as a value to the "mode" attribute, as described in Section 10.2.1.
Possible values include "random" (unordered), "roundrobin" (one to each output port and repeating),

"by_type", "grouped_by_2", and "balanced". If dealing by type, the output port must be uniquely
identifiable (i.e., there is exactly one output port of the right type for each possible type accepted by the
input port.) This is the only kind of "deal" process in which multiple output types make sense. Other

kinds of "deal" processes require compatible output types.

32

10.3.4. Illustrative Task Descriptions
Figure 9 illustrates typical task descriptions for the predefined tasks. The task description in Figure 9.a
depicts a 2-outpui broadcast task that handles items of some type "packet" in parallel. The task

description in Figure 9.b depicts a 2-input merge task that handles items of type packet in round robin
fashion. Finally, the task description in Figure 9.c depicts a 2-output deal task that handles items of type

packet in round robin fashion.

task broadcast
ports

inl: In packat;
outl, out2: out packet;

behavior
ensures "inaart(outl, first(inl)) & insert(out2, first(inl))";
liming loop (inl (outl j| out2))

attributes
mod« = parallel;

end broadcast;

a. Parallel Broadcast

task marga
ports

inl, in2 : in packet;
outl; out packet;

behavior
ensures "insert (insert (insert (outl, first (ml)) , first (in2)) , first (in3)) '
timing loop ((inl in2 in3) (repeat 3 => outl)) ;

attributes
mode = sequential round robin;

end merge;

b. Round-Robin Merge

task deal
ports

inl: in packet;
outl, out2: out packet;

behavior
ensures "insert(outl, first(inl)) & insert(out2, second(inl))";
timing loop (inl outl inl out2);

attributes
mode = sequential round robin;

end deal;

c. Round-Robin Deal

Figure 9: Predefined Task Descriptions

These descriptions do not really exist in the library. The compiler generates them on demand to satisfy
process declarations of the form;
pb: task broadcast attributes mode = identifier; end broadcast;
pm '"""'
pd

task merge attributes mode = identifier end merge;
task deal attributes mode = identifier end deal;

where identifier\s "parallel", "sequential_round_robin", etc., as defined by the implementation.

33

10.4. Configuration File
Information about the configuration of the heterogeneous machine, the location of system files and
libraries, and other random information required by the compiler, library, and scheduler appears in a

configuration file.

proceasor = warp(w«rp_l, i«arp2);
procaaaor = eun(8un_l, aun_2, •un_3);
i-mplamantation = "/uar/cbw/hatlib/" ;
dafault_input_oparation = ("gat", 0,01 seconds, 0.02 seconds);
d<»fault_output_oparation = ("put", 0.05 seconds, 0.10 seconds);
dafault_qu«u«_l«ngth = 100;
data__operation * ("fix", "fix.o");
clata_op«ration, = ("float", "float.©");
data_op«ration = ("round_float", "round.o");
data_oparation = ("truncate float", "trunc.o");

Figure 10: Configuration File

The configuration file in Figure 10 illustrates the definition of the hardware configuration (values for the

"processor" attribute), the location of the system task implementations, and various pieces of information

about queues and queue operations.

In the "processor" attribute, the meaning of a class name is understood by the scheduler as standing for
any of the specific values in the class (i.e., a run-time choice of processors). Notice that this choice can
be restricted by the user in a task description by specifying a subset of the class, and restricted even
further in a task selection by specifying an even smaller subset of allowable processors.

The example configuration file also specifies the location of system files, in particular, the

implementations of system tasks. Additional information in the file would describe default queue
operations, data transformations, etc.

Keep in mind that the configuration file is not written in the task description language. The example
shown is just an illustration of the kinds of information that are likely to be contained in the rile — form and
content of the file are implementation dependent.

34

11. Appendix -- An Extended Example
This appendix illustrates a task-level description of a fictional application. A process-queue graph of the

application appears in Figure 11.

11.1. Data Transformation Tasks
task. com«r turning

port«
inl: in l&ndmArk row_major;
outl: out landirvar)c_colunm_mAjor;

attributas
impläjnontation = "/u8r/mrb/scr»«tch . o" ;
proc«8»or = buffÄ^_proc«8 8or;
. . . other nttnbutes uniquely identifying an implementation . . .

•nd corn«r_turning;

11.2. Type Declarations
typ« map databaaa i«

typ« daatination is

typ« local jjath is

t^« r«cogniz«d road is

typ« road_s«l»ction is

typ« v«hicl«_position is

t^-p* v«hicl«_motion is
typ« wh««l"motion is

typ« landmark is

typ« landmark_li8t is

typ« landmark row major is

typ« landmark_column_major is

typ« viaxon_road is

typ« sonar road is

typ« lasar_road is

typ« road is

typ« obstaclös is

11.3. Task Descriptions
task navigator

ports

inl: in map_databas«;

in2 : in dastmation;

outl; out road_s«l«ction;

out2: out landmark_list;

attribut««

author = "jmw";

varsion = "1.0";

proc«ssor = "m68020";

«nd navigator;

task road_pr«dictor
ports

inl: in map databas«;

in2. in road_8«i«ction;

in3 in v«hicl«_position;

outl: out road;

end road_j3r«dictor;

task landraark_pr«dictor

ports

inl: in landmark._li8t;

in2 ; in v«hicl«_jposition;

outl: out landmark row_major;

«nd landmark_pr«dictor;

35

Map database Dest inati on
Crem Mission Control

Figure 11 — Example Process-Queue Graph

36

t^sk road_findar

port*

inl: in road;

outl: out racogniz«d road;
•nd road_find«r;

task landmark racognizwr
ports

inl: in landmark_coluinn_inajor;
outl: out landmark_coluitui_major;

and landinark_r«cofyni2«r;

task vision
ports

inl: in vision_road;
outl: out obstaclas;

attributes
procasjor = warp;

«nd vision;

task sonar
ports

inl: in sonar_road;
outl: out obatacles;

attributes
proceasor ■ warp;

and sonar;

task laaar
ports

inl: in la8ar_road;
outl: out obstaclas;

attributes
procaasor = warp;

and lasar;

task positxou_coinputacion
ports

inl: in landnuirk_columii_major;
in2: in vahicla_motion;

outl, out2: out vahicla_poait. on;

end poaition_computaticn;

cask local_path_planner

ports

inl: in wheel motion;

in2: in obstacles;

outl: out localjjath;

out2: out vehicle_motion;

end local__path_plani,.ar;

task vehicle control

ports

inl: in local_j3ath;

outl: out wheel motion;

end vehicle control;

37

task obstacla_fInder

port»

inl : in r«cogniz«d_roaci;

outl t obBtacles;

behavior

Irop (inl[10, 15] outl[3f 4});

structure

process

p_deal: task deal attributes mode = by_type end deal;

p merge: task merge attributes mode = fifo end merge;

p_8onar: task sor.ar;

p_laser: task laser attributes pr-oressor = warpl end laser;

bind

p deal.inl = obstacle_finder.ini;

p merge.outl ~ obstacle finder.outl;

queue

qi

q2
q3
q4

p_sonar.outl > > p_merge.ini;

p lasar.outl > > p_merge.in2;

p_deal.outl > > p_sonar.ini;

p_deal.outl > > p_la3er.ini;

--for dynamic reconfiguration

if CurrentJTime >= 6:00:00 local and CurrentJTime < 18:00:00 local

than

process
p vision: task vision attributes processor = warp2, end vision;

queue

qs
q6

end if

end obstacle finder;

p deal.outS > > p_vision.ini;

p_vision.outl > > p ma ^.in3;

11 ■ Application Description
tasK ALV

attributes

version = "Fall 1.986";

processor = HET0;

spaed = fast;

structure

process

navigator: task navigator attributes author = "jmw" end navigator;

rojd_p,-edictor: task road_predictor;

landmark_j. redactor : task landmark_predictor;

road finder: task road finder;

landmark_recognizer: task landmark recognizer;

obstacle_finder: task obstacle finder;

position_ccmputation ; task po8ition_coinputation;

local_path_planner: task localjpath_planner;

vehicle_control:

ct_process:

quaue

task vehicle_control;

task comer turning,

qi
q2
q3
q4

q5

q6

q7
q8

q9

navigator.outl

navigator.out2

road_jpredictor. outl

road finder.outl

obstacle finder.outl

local_jpath_planner. outl

local_path_planner.out2

vehicle control.outl

landmark_predictor.outl

> > road_pred±ctor.in2;

> > landmrrk_predictor.ini;

> > road_findar.ini;
> > obstacle finder.ini;
> > local_path_planner.in2;
> > vehicle_control.ini;
> > position_coiBputation. in2;
> > local_path_planner. inl ;
> ct_proces8 > landmark recognizer.inl;

— requires data transformation between row_major and colunuri_iaajor landmarks
qlO : landmark_recognizer.outl > > position_con5)Utation. inlj-
qll :position_coinputation , outl> > road_predLictor. in2;
ql2 :position_coir5>utation.out2> > landinark_predictor. in2;

end ALV;

38

References

[1] MR. Barbacci and J.M. Wing.
Specifying Functional and Timing Beha vior for Real-time Applications, (in process)
Technical Report, Software Engineering Institute. Carnegie Mellon University, 1986.

[2] J.V. Guttag, J.J. Horning, and J.M. Wing.
Larch in 'rive Easy Pieces.
Technical Report 5, DEC Systems Research Center, July, 1985.

[3] J.V. Guttag, J.J. Horning, and J.M. Wing.
The Larch Family of Specification Languages.
/EEE Software 2(5):24-36, September, 1985.

[4] H T. Kung.
Private communication.

[5] S.A. Shafer, A. Stenz, C.E. Thorpe.
An Architecture for Sensor Fusion in a Mobile Robot.
In Proceedings of the IEEE International Conference on Robotics and Automation, pages

2002-2011. San Francisco. California, April, 1986.

[6] R.G. Stockton.
The Heterogeneous Machine Simulator, (in process)
Technical Report, Software Engineering Institute, Carnegie Mellon University, 1986.

39

Index
" 5.14

' 5

(9, 19.21,25,27,29,30

) 9, 19,21,25,27,29,30

* 17,25

. 5, 18

- 5

. 5.12,16,21,23

/ 17
/= 28

: 12.17,23

; 8,12,14,21,23,27

< 28
<= 28

= 21, 27. 28,30
= > 19

> 23,28
>= 28

@ 17

(18 23

] 18 23

5

■■ 5

(5

II 19
} 5

After 5, 19,20
And 5,21,27
Array 5, 9
ArrayArgument 25
ArrayDimension 9
Ast 5,17,20
AttrCon)unction 21
AttrDescnption 21
AttrDescriptionPart 10,21
AttrDisjunction 21
Attributes 5, 21
AttrName 21
AttrPnrnary 21
AttrSelection 21
AttrSelectionPart 11, 21
AttrTerm 21
AttrValuG 21

Balanced 30. 31
BasicEventExpression 19

40

Before 5, 19,20
Behavior 5, 14
BehaviorPart 10,11.14
Bind 5, 23
Broadcast 7, 30, 31
Buffers 2, 5, 24
Byjype 30,31

Comment 5
Compilation 8
L ,mpilationUnit 8
Compiler 8, 32, 33
Configuration file 18, 19, 24, 26, 31, 33
Constrains 15
Cst 5,17
CuiTent_size 7, 29
Current_time 7, 29
CyclicTimmgExpression 19

DataOp 25, 26
Date 5. 17
Days 5,17
Deal 7.30,31
Delay 7. 18, 19, 20
Dunng 5, 19,20

ElementSize 9
End 5, 10, 11,27
Ensures 5, 14, 15. 16
Est 5. 17
EventExpression 18, 19
ExtPortName 27

Fifo 30,31
FunctionCall 7, 29
FunctionName 29
FunctionParameters 29
FunctionPart 14

Get 7, 15, 18
GlobalAttrName 7, 21
GlobalPortName 12,18,23,27,29
GlobalProcessName 27
GlobalQueueName 23
GlobalSignalName 12
Gmt 5, 17
Grouped_by_2 30,31
Guard 12

Hours 5, 17

Identifier 5,9, 12, 18,21,23,25,30
Identity 5, 25. 26
If 5, 27
Implementation 2, 7, 22, 30
ImplementationAttr 30
ImplementationAttrValue 21 30
In 7,12,13
IndeterminateTime 17
Index 7, 25, 26
Integer 5
Integerüteral 7
IntegerValue 7,9, 17. 19.21,23,25,28, 29
Interface specification 14
InterfacePart 10,12
IntPortName 27
Introduces 15
Is 7,9

41

Larch Interface Language 14
Larch interface Specification 14
Larch Predicate 14, 19
Larch Shared Language 14
Larch Trart 14
Library 8. 11,24,26,32,33
Local 7 17
Loop 7, 19

Merge 7,30,31
Mmus_time 7, 29
Minutes 7, 17
Mode 7, 22, 30, 31
ModeAttr 30
ModeAtt'Value 21.30
Months 7, 17
Mst 7, 17

Not 7.21,27

Of 7.9
Or 7,21,27
OtherAttrValue 21
Out 7, 12, 13

ParallelEventExpression 19
Parameter 29
Plusjime 7, 29
PortBmding 23,27
Port Declaration 12
PortDeclarationPart 11,12
PortName 12,27
Ports 2, 7, 10,]z. IG
Predicate 14, 19
Process 5, 7, 23
ProcessDeclaration 23
ProcessName 12,21,23
Processor 5,7,22,24.30,31,33
ProcessorAttr 30
ProcessorAttrValue 21,30
ProcessTermmation 27
Pst 7, 17
Put 7. 15. 18,24

Queue 5,7,23
QueueDeclaration 23
QueueDefinition 23
QueueName 23
QueueOperation 18
QueueSize 23

Random 30, 31
Real 5
RealLiteral 7
RealValue 7. 17,21.28,29
RecConjunction 27
RecDisjunction 27
Reconfiguration 7, 23, 27
ReconfigurationClause 23
RecPredicate 27
RecRelation 27, 28
RecTerm 28
Remove 7, 27
Repeat 7, 19,20
Requires 7, 14, 15, 16
Reshape 7, 25, 26
ReshapeOp 25
Reverse 7, 25, 26

42

ReverseOp 25
Rotate 7, 25. 26
RotateOp 25
Round_robin 30, 31

Scheduler 5, 12. 13.28,33
Seconds 7, 17
Select 7,25,26
SelectOp 25
SignalDeclaration 12
SignalDeclarationPart 11,12
StgnalName 12
Signals 7. 10, 12
Size 7, 9
String 5
StringLiteral 7
StnngValue 7,21,28,29,30
Structure 7,11. 23, 27
StructureClause 23
StructurePart 10,23
Switch 5

Task 5, 7, 10, 11
TaskDescnption 8, 10
TaskName 10, 11
TaskSelection 11, 23
Then 7,27
TimeLiteral 7, 17
TimeOfDay 17
TimeUnit 17
TimeValue 7. 18. 19. 21.28. 29
TimeWindow 18, 19
TimeZone 17
Timing 7, 14
TimmgExpression 14,19
TimingPart 14
To 7,9
Trait 14
TranstormExpression 23, 25
TransformOp 25
Transpose 7, 25. 26
TransposeOp 25
Type 7. 9
TypeDeclaration 8, 9
TypeName 9, 12
TypeStructure 9

Union 7 9
UmonStructure 9

VectorArgument 25

When 7. 19.20

Years 7,17

SECURITY CLASSiF'CATlCN OF THIS PAGE

REPORT DOCUMENTATION PAGE
It REPORT SECUFIITV CLASSIFICATION

UNCLASSIFIED
lb. RESTRICTIVE MARKINGS

NONE
2» SECURITY CLASSIFICATION AUTHORITY

N/A
2b. OECLASSIFICATION/DOWNGRAOING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Distribution unlimited.

A PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBERC

6«. NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INST.

|6b. OFFICE SYMBOL
(If appiicabie)
SEI

a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE
-*-

6c. ADDRESS *Ci(y. State and Zlt CcxUi

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

g«. NAME OF FUNOlNG/SPONSOKlNG
ORGANIZATION

SEI JOINT PROGRAM OFFICE

Bb. OFFICE SYMBOL
{If appitcablei

ESD/XRS1

7b. ADDRESS iCity. State and ZIP Coaei

ESD/XRS1
HANSCOM AIR FORCE BASE

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State and ZIP Coae)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

10, SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO.

11, TITLE f/ncjua* Securxty Cla*u(icat\oni
Durra: A Task-Level Description Language Pre-
Iimmarv Reference Manual r o o

63752F

PROJECT
NO.

N/A

TASK
NO.

N/A

WORK UNIT
NO.

N/A

\2. PERSONAL AUTHOB(S)
M.R. Barbacci and J.M. Wing

13«. TYPE OF REPOR"!

riKAT

13b. TIME COVERED

F ROM

Id. DATE OF REPORT iYr.. Mo.. Day)
Dec. 1986 Version 0.1

15. PAGE COUNT
46

16. SUPPLEMENTARY NOTATION

COSATI CODES

FIELD GROUP SUB. GR

18. SUBJECT TERMS iConUnue on reverse tf neceuary and idtntify by block numberi

19 ABSTRACT {Continue on reverse if neceuary and identify by blocn numben

Durra is a language designed to support the development of large-grained parallel

programming applications. This document is a preliminary reference manual for the
syntax and semantics of the language. Comments, suggestions, criticisms, etc. are
appreciated, [addresses of authors follow]

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITEO^J SAME AS BPT. G OTIC USERS D

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION
22». NAME OF RESPONSIBLE INDIVIDUAL

KARL H. SHINGLER
22b. TELEPHONE NUMBER

(Include Area Codei

412 268-7630

22c OFFICE SYMBOL

SEI JPG
DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGI

